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SUMMARY 

A continued f r ac t ion  representation f o r  Theodorsen's c i r c u l a t i o n  func t ion  
is derived. 
everywhere except on the  branch cut.  
except when the  argument is small. 
continued f r ac t ion  g r e a t l y  f a c i l i t a t e s  t h e  eva lua t ion  of i n t e g r a l s  containing 
the  c i r cu la t ion  function. 

This continued f r a c t i o n  converges t o  the  c i r c u l a t i o n  function 
It can be used to  compute the function 

When converted t o  pole-residue form t h e  

INTRODUCTION 

Theordorsen's c i r c u l a t i o n  function ( re f .  1) relates l i f t  to  downwash 
i n  unsteady incompressible po ten t i a l  flow. The function can be expressed as 
the ratio of t w o  continguous confluent hypergoometric functions and hence has 
a continued f r ac t ion  representation der ivable  from the continued f r a c t i o n  of 
Gauss. 

This continuea f r ac t ion  can be truncated t o  g ive  ratiorial approximations 
to  the  c i r cu la t ion  function. 
theory because t h e i r  pc l e s  and zeroes are e a s i l y  computed. 
t i ons  can a l s o  be inverse Laplace transformed t o  g ive  accurate approximations 
t o  Wagner's function. 

These approximations are a s e f u l  i n  con t ro l  
These approxima- 
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correct ion i n t e g r a l  used when evaluat ing Wagner's funct ion 

subdiagonal and superdiagonal A-matrix elements 

confluent hypergeometric function 

even part of C ( - i s )  (real part of C ( - i s )  i f  -is i s  real) 

[ C ( - i s )  - F(-is)] / ( i2)  

modified B e s s e l  function of t h e  f i r s t  kind 

fi 
B e s s e l  function of f i r s t  and second kind 

t runcat ion order 

number of residues t h a t  cont r ibu te  s i g n i f i c a n t l y  to C (-is) 

even t runcat ion numerator 

2n 

odd truncat ion numerator 

even t runcat ion denominator 

odd t runcat ion denornipator 

ra t io  of two contiguous confluent hypergeometric funct ions 

any polynomial of degree k s a t i s f y i n g  a th ree  tern 
recursion r e l a t i o n  

complex argument of c i r c u l a t i o n  function = CI + io 

poles of Czn (-is) 

zeros of numerator i n  C Z n ( - i s )  

t i m e  

polynomial column vector 

4s 

r e s u l t  spacing i n  FFT quadrature 

c o e f f i c i e n t s  used i n  l e a s t  squares approximation 
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Wagner's function 

a value of w such that 

step size used in FFT quadrature 

asymptotic to 

approximately equal 

eigenvalue of A (= -4s) 

arbitrary order of Bessel function 

real p a r t  of s 

imaginary part of s 

ICZn (w) - C ( w )  I < E if w > wo 

THE CONTINUED FRACTION 

Theodorsen's circulation runction can be expressed 

The region of aerodynamic interest in the complex s-plane lies on or  near the 
positive imaginary axis. The Bessel function \(SI is expressible as a 
confluent hypergeometric function (eis. 13.6.21 and 13.1.10.2 of ref. 2). 

Replacing the Bessel functions in 
geometric functions and using Gauss' relation for conhjuous functions 
(eq. 15.2.14 or 13.4.17-19 of ref. 2 )  to combine the numerator functions gives 

C = 1 - Ko/(K0 + K 1 by confluent hyper- 

The ratio of two contiguous confluent hypergoemetric functions 

has a very simple continued fraction representation (the confluent form of the 
cantinued fraction of Gauss, see chapter XVIII of ref. 3 ) .  It is 
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3 

b 2 + b 3 + .  . . 

where bo = 1, a = -$, bl = 1 1 

and 

a = 2 n - 1 ,  bZn = 4s. 2n 

a = 2n - 1, b2n+l = 1  2n+l 

n = 1 , 2 ,  ... 

That is, 

'i 
1 c(-is) = I - 

1 1 +  
3 

4 s + .  . . 
4s + 

I +  

This continued fraction converges t o  
cu t  on the negative real axis. 

C ( - i s )  i n  the ent ire  complex s-plane 
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RATIONAL AE'PROXmTIONS 

L e t  Cn(-iS) represent  the  continued f r a c t i o n  of equation ( 6 )  and (7) 
truncated by discarding all terms beyond an&,. That is, by s e t t i n g  an+l 
to zero. T h i s  can be expressed as a r a t i o n a l  funct ion 

Cn = An/Bn (10) 

where An, Fn are polynomials i n  4s computed by the usual forward recur- 
s ion formula ( re f .  3)  f o r  continued f r ac t ions ,  namely 

Aml = 1; B-l = 0; A. - - bo; Bo = 1 

Since the  even and odd terms of the f r a c t i o n  have d i f f e r e n t  forms (eq. ( 8 )  1 ,  
it is convenient to separate the even ai15 odd subsc r ip t s  i n  recursion (11). 
L e t  

whsre 

- - 
The recursion formulas for Pn, Qn, Pn and Qn are derived from equation (11) 
and are 

P ( X I  = 2; 
0 

P1(x) = x + 2; (15) 
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- 
It can be seen that Pnr Qnr Pn, and cn are all polynomials in x = 4s 
of degree n for n > 0. The first few polynomials of each set are 

Qo = 1 Q 1 = x + l  

Q, = x2 + 5x + 3; 

Q, = x + 25x3 + 165x + 298 x + 105 

Q, = x3 + 13x2 + 34x + 15 

4 2 

4 3 2 = x5 + 41x + 516x + 2301x + 3207x + 945 Q5 

Po = 2; P 1 = x + 2  

= x3 + 14x 2 + 45x + 30 
F3 

= x2 + 6x + 6; p2 

p4 

p5 

3 2 = x4 + 26x + 188x + 420% + 210 

= x5 + 42x4 + 555x 3 + 2742x4 + 4725x + 1890 

(19) 

(20) 
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- - 
Qo = 1; Q 1 - x + 2  

2 - 
= x3 + 18x + 74x + 60 2 - 

Q3 Q2 = x 

3 2 Q4 = x4 + 32x + 291x + 216x + 525 

Q5 = x5 + 50x + 804x + 4920x + 10551~ -I. 5670 

+ 8~ + 9; 

- 

4 3 2 - 

- - 
Po = 1; P 1 = x + 3  

2 P3 = x3 + 19x + 9Ox + 105 
- - 
P2 = x2 + 9x i. 15; 

3 3 P4 = x4 + 33x + 321x + LOSOX + 945 
- 

4 3 - 
P5 = x5 + 51x + 852x + 5631x2 + 14175~ + 10395 (22) 

Inspection of the first new polynomials and the recursion formulas shows C a t  

Qn(0) = (2n - l)!! 

Qn(0) = (n + 1) (2n - 1) !! 

C2JO) = 1 

and 

1 
2n + 2 CZn+l(0) = 1 - - 
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The even numbered convergents Can give the co r rec t  value of C ( 0 )  while 
the odd conveLgents Czn+l merely approach the cor rec t  value. Because of 
t h i s ,  and because they have a s l i g h t l y  simpler eigenvalue matrix, t h e  even 
convergents are much more convenient to use. 

The even convergents are the diagonal elements, and the odd convergents 
are subdiagonal elements of a Pad6 matrix defined by s e t t i n g  its f i r s t  column 
to  the convergents of the asymptotic series for 
f o w  to  those of the asymptotic series for 
the f i r s t  f e w  diagonal Pad6 elements. 
i n  reference 4 is  incorrect .  Fortunately reference 4 makas no fu r the r  use 
of C s ( - i s ) .  

C ( - i s )  and s e t t i n g  its f i r s t  
l / C ( - i s ) .  Reference 4 t abu la t e s  

However, the expression f o r  C s ( - i s )  

POLES AND ZEROS 

A l l  t he  poles and zeros  of Czn(-iS) 
If they are numbered i n  order of dis tance from the o r i g i n  they s a t i s f y  the 
inequal i ty  

l i e  on the negative real axis. 

where Sk are the  poles  (zeros of Qn) and s i  are the  zeros  (zeros of P ~ ) .  

It is n o t  practical to compute the poles  of Czn(-is) by solving 
Qn(x) = 0 a s  a polynomial equation if n is la rge  because Qn(x) overflows 
:',- mrnputer i f  x is barely outs ide of the convex set containing a l l  of the  
roots. snstead the  recursion formula (16) is used t o  construct  matrices 
whose eigenvalues a re  the poles and zeros of C 2 n ( - i s ) .  

Suppose the polynomials Rk(x) are each of degree k for k - > 0 and 
s a t f s f y  the three term recursion r e l a t i o n  

If €Ll # 0 thcn aQ and bo should be redefined so R 1  does equal 0. I f  
%(IC) = 0, t h e n  equation (24) can be w r i t t e n  i n  matrix form dS 
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This  is a matrix eigenvalue problem 

Ax = Ax 

where A = -x 

and A is  a tridiagonal matrix whose kth row is  

(0, ..., -c k-1' bk-l' -ak-l' . . .O) 

The matrix A i s  made symmetric by replaciny % by y k x  where 

YkIY,,, = Jck/ak-l 

(25) 

(29) 
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Then AX = AX where naw 

where 

- 
dk - bk-.l 

a s  before and 

e =  k "k-1%-2 

To compute the poles sk of C Z n ( - i s )  let  \ = Qk. Then 

-1 0 9 0 

4 -3 0 0 

-3  8 -5 0 i 

and s = -$Ak. k 

(31) 

(32) 

(34) 

(35) 

(36) 
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That is 

for 

al = 1 

e = 1  2 

d2 = 4 

k = 3 t o n  

- 
dk - + 

e = e  - 2  
k k-1 

next k 

k' Similar ly  the  zeros s of C (-is) are obtained by l e t t i n g  F$ = P 
Then 

k 2n 

-fi 

4 

-3 

0 

0 

- 3  

8 

-5  

0 

0 

-5 

1 2  

0 

0 

0 

-7 

1 

s = -$A, k 
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l h a t  is 

f o r  

= 2 

e = J Z  
d2 = 4 

e3 = -3 

d j  = 8 

2 

k = 4 t o n  

% = 4K-l +- 4 

e = e  - 2  

next k 

k k-1 

Both A matrices are t r id iagonal ,  symmetric, and pos i t i ve  d e f i n i t e .  Eigen- 
values can e a s i l y  be computed even f o r  very larue n because the  nonzero matrix 
elements are easy t o  compute and do not  vary widely i n  magnitude. 
conputed using procedure tgR1 on pare  232 of reference 5. I t  lists the  
poles s and zeros  s; of C (-is) for n = 1, 2 ,  4 ,  and 8. 

Table I w a s  

k 2n 

POLES AND RESIDUES 

The expression f o r  C2,,(-is) can be wr i t ten  

Pn - Qn i s  of lower degree than Qn and the zeros of Qn are a l l  d i s t i n c t  
S O ,  using p a r t i a l  f r ac t ions ,  ont? obta ins  

The coe f f i c i en t s  cif the p a r t i a l  f r ac t ion  

sk. 
rk  are the  residues of the poles  

They can be computed from e i t h e r  
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or 

The res;&Jes app-oach zero rapidly as k increases.  This is because of the 
factor sk - s i  i n  equation (45). Except for  t h e  upper l e f t  hand corner 
e l e n t s  dl and e 2  the eigenvalue matr ices  for Sk and s i  are iden t i ca l .  
Thse corner elements have l i t t l e  effect on the higher eigenvalues because the 
matrices are diagonally dominated. The fact that rk -P 0 rap id ly  as k 
increases  is important because it means tha t  when n is large t h e  sum (43) 
can be truncated as n' where n' < n and 

for a l l  k > n'. Then 

n' 
k r 

k s - s  c 2n (-is) 2 1 2 +C 
k=l  

Tne number of terms i n  t he  sum (47) increases  much more slowly than n. 
Table 11, which is a continuaticm of table I,  lists the  poles, zeros,  and 
tcsidues f o r  n = 16, 32, 64 and 12s. I t  also lists n' based on 
E = 10-10. N o t e  hox slowly n' illcreases with n. 

APPLICATIONS 

AppJications of the  cont imed f r a c t i o n  representat ion of C ( - i s )  include 
its 'LSS fo evaluate t h e  function and its use to  represent  or t o  evaluate  
i n t e g r a l s  ( p a r t i c u i a r l y  i n f i n i t e  l i m i t  i n t e g r a l s )  containing C (-is) . 

The error contours of Czn(-is) resenble a family of parabolas containing 
the  negative real axis and with a common fozus a t  t h e  or igin.  
s = 0 t iw ( 0 , ~  r e a l ) ,  then the  error contours are approximated by the  family 
of parabolas 

That is, i f  
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2 2 2 w c r + w  - 
0 - wo (48) 

q,, the  in te rcept  of the  parabola with the  waxis, is a funct ion of €, t h e  
error ta lerance,  and of n. Given n and E i f  u9 has been computed then 
jC2n(-is) - C ( - i s )  I < E f o r  a l l  s = U + i w  for wfirch 

2 
to2 + 2w 0 u wo (49) 

It  is hard to  compute wo from E and n so the usual  procedure is to 
choose ~0 and then compute 

-12 
For example, i f  wo = 2 and n = 8 ,  then '1. = 0.3 X 10 and the error i n  
C2n is less than 2 f o r  a l l  real w > 2 and for a l l  complex s = u + i w  
for which 413 + w2 > 4. 

The continued f r ac t ion  is the  most e f f i c i e n t  way available to compute 
C(w) i f  w > 2 or if complex s = cs + i w  s a t i s f i e s  4 0  + u2 > 4. It should 
ba used i n  pole-residue form truncated a t  n' f o r  small  W. IF w > 20 
(or i f  4 M  + u2 > 400) it 
The asymptotic series f o r  

L 

should be used as a truncated asymptotic series. 
C ( - i s )  i s  

286 2756 32299 

(4s)  
+ - - -  

(4s) (4s) 

The asymptotic series is obtained from equation (9) by repeated d iv is ion .  
The s e r i e s  (51) diverges for a l l  s. The asymptatic series, unl ike the 
continued f r a c t i o n ,  can be used t o  approximate C ( - i s )  on the branch c u t ,  
arg(s )  = fit, if Is1 is s u f f i c i e n t l y  large.  

(511 

The other  use of the continued f r ac t ion  mentioned a t  the beginning of t h i s  
sect ion i s  t o  f a c i l i t a t e  e v a l w t i o n  o f  i r i tegrala  containing C ( - i s ) .  For t h i s  
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application the pole-residue form, equation (471, is used. examples are 
presented. one is the evaluation of Wagner's function $(t). The other is 
the evaluation of some integrals that occur when approximating 
least squares. 

C ( - i s )  using 

Wagner ' s Function 

Wagner's function $(t), is the inverse Laplace transform of C(-is)/s. 

st CI-is! ds I e -  S $(t) = 1 i 2s 

Each rational approximation to C(-iS) 

k r 
C2,(-is) = - f + 

k k= 1 

has an associated exponential approximation to S(t) 

42n(t) = 1 + 
k=l 

(52) 

(54) 

obtained by substituting equation (53) into equation ( 5 2 )  and performing the 
indicated intearal transformation. The 1 appearing in equation (54) is 
computed from . 

CZn(O) = 

n 

2 S 
k= 1 

'.c rk=1  
k 

(55) 

This is only true for the diagonal Pad6 elements 
Pad; elements 

Czn. For the subdiagonal 

1s 



1 
2n + 2 

k=l  

n'<n - r -  

2n + 2 42n+l(t) = 1 - 
k=l 

( 5 6 )  

(57 )  

The odd approximants to @(t) do not  g ive  the correct l i m i t  at t-. The 
approximation (54) can be used to  compute +(t) accurately,  even f c r  small  n, 
if t is s u f f i c i e n t l y  small. For l a rge  t equation (54) has too s t rong  an 
exponential decay. 

Equation (54) i l l u s t r a t e s  the use of the pole-residue form of the 
continued f r ac t ion  f o r  C ( - i s )  
fom integrat ion.  It can also Se used to  s implify a numerical in tegra t ion .  
'b i r i tegrate  equation ( 5 2 )  t he  path of i n t eg ra t ion  (c-i-, c+i-) must be 
Fixed. The only r e s t r i c t i o n  is that the path be to the r i g h t  of the branch 
poin t  a t  s=O and have a nonposit ive yea1 part at the t w o  ends. Two paths 
are very convenient f o r  numerical in tegra t ion .  One is the imaginary axis as 
shown i n  f igu re  1. 

to  replaca a numerical i n t eg ra t ion  by a closed 

The o ther  is the branch cut a s  shown i n  f igu re  2. 

If path 1 is used and syrrwetry of the integrand is considered (see 
sect ions 5 through 7 of ref. 6 for d e t a i l s )  one obta ins  the  following i n t e g r a l  
yepresentation for $ ( t )  

F(w) dw 
2 s i n  u t  +!t) = - 

w ( 5 8 )  

If path 2 i s  used and symmetry of the  integrand is considered one obta ins  

00 

-2 -st s e its Q(t) = 1 - [ - 2 
(KO - K2) 

(59) 

The continued f r ac t ion  f o r  C ( - i s )  cannot be used to help evaluate  
equation (59) because the continued f r ac t ion  diverges  along the  branch cut. 
However, the  continued f r ac t ion  can provide considerable he lp  i n  evaluat ing 
equation (58) as w i l l  be shown. 
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The function F(o )  appearing i n  equation (58)  is usually defined to be 
the real part of c h ) .  However, i f  complex arguments are permitted, it is 
more convenient to define it to be the even part of C ( - i s ) .  

The function F ( - i s )  usually occurs i n  associat ion w i t h  the functior. 
G (-is) defined 

Equation (53) furnishes rational approximations to F and G 

n ' n  
1 

F (W) = 7 + 2n 

n'<n 
k r 

s 2 + u 2  
G2n(W) z (L' 

k=l k 

If the F(w) i n  equation ( 5 8 )  is expressed 

and the f irst  F i s  integrated i n  closed form one ob^;rins 2n 

Q(t)  = 9 2 n ( t )  + E Z n ( t )  

where 453,(t) ic given by equation (54) and the e r r x  or correction term 
E Z n ( t )  i s  

(62) 

(63) 

(65) 

1 ' I 



Equation (66) is much easier to in t eg ra t e  numerically than equhtion (58). 
This is  because it has f i n i t e  limits and because a large relative error can 
be tolerated. 
to compute. Equation (66) has a f i n i t e  upper 1 s t  because F - F h  is 
essen t i a l ly  zero for  
IF - F2nl << F 

I n f i n i t e  l i m i t  o s c i l l a t o r y  i n t e g r a l s  are notoriously d i f f i c u l t  

w > ~ 0 .  A l a rge  r e l a t i v e  error can be t o l e ra t ed  because 
even for-w < h&,. 

I f  equation (66) is t o  be integrated f o r  a s ing le  value of t a 
sophis t ica ted  in tegra t ion  technique such as Legendre-Gauss or Romberg quadrature 
can be used. However, i f  a l a rge  number of values  of t are used, then 
equation (66) should be evaluated as a t rapezoidal  sum using a fast Fourier 
transform. For a quadrature order m l e t  

w =.kh, k = O t o m  

t = to 4- ut, I I = O t o m  

The FFT formalism requi res  t h a t  

AuAt = 2n/m 

so 

2n A t  = - w 
0 

The t rapezoidal  sum for E i s  2n 

V I  Aux s i n  kAu (to f Rht) 

k=O 

( 6 7 )  

(68) 

(69) 

. 

18 

kAw 



or 

f o r  R = O  to m - 1  

where f = 0 and 
0 

f o r  k = 1 t o  m - 1. 

By usirtg a f a s t  Fourier transform t o  evaluate  the sum i n  equation (711, 
it is possible t o  evaluate  E2n(to + 2T/w0 R) f o r  m values  of k using 
only log2(m) times as much computing e f f o r t  as would be required f o r  one 
value of k. However, only the  Ezn( t0  + 2'1T/q-, R) for < m/4 are reason- 
able approximations to  the  i n t e g r a l  (66). The term to i n  the  argument of 
E2n is to  permit in te rpola t ing  between values  of & A t .  It should not  be 
l a rge r  than 2n/w, or a l i a s i n g  can occur. Thus, t he  l a r g e s t  value of t f o r  
which @(t) can be computed is  

This can be increased e i t h e r  by increasing the  quadrature order  m or by 
icreasing the  exponential  approximation order  n,  thereby decreasing uo. 

The c i r cu la t ion  Ccnction F ( w )  i n  equation (72) can be computed using 
Bessel funct ions 

J1(J1 + Yo) + Y1(Y1 - Jo) 

(J1 + Yo) 
2 2 + (Y1 - Jo) 

F(W) = - (74) 

A very convenient way to  compute Jv or Yy f o r  a l a rge  >umber of equispaced 
arguments 
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( 7 5 )  
0 
m w = -  k, k = l  to m - l  

is to evaluate JV and Yu accurately at the t w o  ends, 0 = q,/m and 
w = w, - uo/m and ther. to approximate Jv8 Yv at all the intermediate 
points 
boundary value prDblem. T h i s  permits computing J,,, Yv at the intermediate 
points with less computing effort than is required for an elementary function 
such as a square root. 
with which the intermediate Bessel functions are computed increases as the 
quadrature order m is increased. 

(k = 2 to m - 21 by solving the Bessel equation as a finite difference 

It has the additional advantage that the accuracy 

Equations (651, (531, and (71) can be used to compute @(t) for any 
reasonable value of t. For unreasonable values of t such as lo6 or to 
estimate the behavior of $(t) as t -+ Q) the other integral representation, 
equation (59);should be used. 
quadrature. 
weight function should represent the behavior of the integrand at infinity 
rather than merely being an easily identifiable exponential factor. 

in equation (59) the exponential weight function is 

The factor e-2s canes from the asymptotic behavior of 

It can be evaluated as a Laguerre-Gauss 
Wnen setting up a Laguerre-Gauss quadrature the exponential 

That is, 
-st . e -(2+t)6, not e 

and I1. Thus IO 

where 

Letting s = x / ( 2  + t) gives 

which can be integrated numerically to give 
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O ( t )  :: 1 - - 2 + t  z w k  ‘(A) 
k=l  

where xk, wk are the  Laguerre-Gauss abscissas  and weights. As t -+ Q) 

the  in t eg ra l  i n  (78) approaches 

so a very Crude approximation t o  @(t)  i s  

1 
2 + t  6 ( t )  = 1 - - (81) 

A s l i g h t l y  b e t t e r  approximation is  obtained by r e t a in ing  the  next term i n  
the  e x p a s i o n  of f (s) about t he  o r ig in  and in tegra t ing  i n  closed form. This 
gives 

Equations (81) o r  (82)  show t h a t  $(t) approaches 1 l i k e  l/t as t 
increases  r a the r  than exponentially as indicated i n  equation (54). 

A Least Squares Approximation t o  C ( - i s )  

This sect ion descr ibes  the  use of the  pole-residue form of the  continued 
f rac t ion  fo r  C ( - i s )  
a l e a s t  squares r a t i o n a l  approximation to  

t o  evaluate  some i n t e g r a l s  t h a t  occur when generating 
c(-is). 

The continued f r ac t ion  f o r  C ( - i s )  is  an expansion about s = Q) + io 
and hence is  very accurate  f o r  la rge  0 and i w I  (where s = 0 + iw) and 
very uneconomical when 0 and w a re  both s m a l l .  I t  has been shown 
( r e f s .  4 and 7) t h a t  economical r a t iona l  approximations v a l i d  f o r  
and U 2 0 can be generated by l e a s t  squares. 

0 - -  < w < 03 

There a r e  several  ways of generating a l e a s t  squares r a t i o n a l  approximation 
t o  C ( - i s ) .  
but is computationally very simple. 

The method described here has a moderately complicated der iva t ion  

2 1  



L e t  

m - 
C(W) = - + 2 C v,.: i w  

Is k+l  

where the constants  uk and Vk are chosen so C(w) approximates C(O)  
over the  e n t i r e  positive real w-ax i s .  One way of computing the constants 
and vk is to  ~ F n k i z e  the c r r o r  

uk 

- 
The expression f o r  C(o),  equation (831, is  l i n e a r  i n  the  Uk and the nonlinear  
i n  the Vk. Hence, it is very easy to minimize E with  respect to the uk 
and very hard to  minimize E with respec t  t o  the Vk. For t h i s  reason the 
Vk are preassigned and the  minimization is  performed w i t h  respect t o  the 
only. The vk are chosen t o  be 'Sk for n'  = m if no better choice is 
avai lable .  The e r r o r  expression E, equation (841, contains  a weight funct ion 

w . This is included to o r ig in  weight the  error. It is  needed because C(w) 
has a logarithmic branch poin t  a t  w = 0 and hence i s  hard to approximate 
fc r  small w. ~ 1 1  that has t o  be done to  compute the uk is  to  set a ~ / a u ~  
t o  ZWL, and solve the  r e su l t i ng  system of l inea r  simultaneous equations. 
is per?ormed as  follows. 

uk 

4 

This 

L e t  

where 
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Then 

and 

for R = 1 to m 

T h i s  g ives  the system of equation 

r. 
(2  = 1 to m) ARk "k = Bk 

k=l  

where 

The factor l/(~fi) was appended to both ARk and B because it makes 
some subsequent arithmetic easier. 2. 

The integral  A can be evaluated i n  closed form. I t  is Rk 

A =  1 . (2.L) 
Rk vI1 + vk 5 %  

(89) 

(93) 
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The integral Bg has to be computed numerically. A very easy way to perform 
this numerical integration is to replace C = F + iG by C2nr the pole-residue 
form of a truncated continued fraction, with n chosen large enough so that 
the error C2n(~) - C(U) is negligible compared to the error E(w) - C(w).  
Then 

n'<n 
k r 

k VR - 5 
BR = 

k=l 

After A& and B& have been 

(+++) (94) 

computed, equation (90) can be solved for uk. 

The above procedure minimized E with respect to uk for preassigned vk. 
If one wants to minimize with respect to %, then substitute equation (90) 
into ( 8 8 )  to get the penalty function 

m 

E = E - ? l f i  Bk\ 0 

k=l 
( 9 5 )  

and perform a nonlinear optimization using some technique such as the Davidon- 
Fletcher-Powell algorithm (ref. 8 ) .  The constant Eo in equation (95) is 
given by 

It can be computed using Czn(-is) the same way Bg, was computed. However, 
since it is a constant-, it is not needed for the optimization and can be 
set to zero in equation (95). 

CONCLUDING REMARKS 

The principal result of the investigation is the fact that Theodorsen's 
circulation function has a continued fsaction representation with a particularly 
simple coefficient pattern, namely the consecutive odd integers. Although 
this continued fraction converges extremely slowly it still furnishes an 
xonomical way to compute the circulation function. The reason for this is 
that when converted to pole-residue form the terms containing distant poles 
can be discarded. For example, retaining only the 120 poles nearest to the 
origin from a 2048 term pole-residue form of the continue? fraction introduces 
an additional errcr of only 10-10 to the approximation to C(-is). 
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This investigation also furnished some information about the singularities 
of the circulation function. The Bessel functions that comprise C(-is), 
namely K,(s) and K~(s), have no singularities other than Logarithmic 
branch points at s = 0 and s = 03. The cnly singularitias that C(-is) can 
possess arc these two branch points and, possibly, poles at the zeros of the 
denominator in C(-is), namely &,(SI + Kl(s). Since Czn(-is) converqes to 
C(-is) everywhere except when arg(s) = +'IT, these zeros, if they exist at 
all, must all lie on the negative real axis. On the negative real axis the 
Bessel functions K, and K1 can be expressed as functions of positive 
real argument by analytic continuation (see eq. 9.6.31 of ref. 2 ) .  The 
real part of this analytic continuation is the same for all sheets of the 
Riemann surface and is K,(x) - Kl(x) where x = -s is real and positive. 
Inspection of figure 9.8 of reference 2, and of the asymptotic expression for 

C (-is) 
at s = 0 and s = w. 

and Kl, shows that G(x) - Kl(x) has no positive real zeros. Hence 
has no singularities whatsoever except for logarithmic branch points 

Tne continued fraction representation of C(-is) furnishes a very 
convenient way to compute Wagner's function from its definition as an inverse 
Laplace transformation. This leads either to an exponential approximation 
to Wagner's function or to an exponential approximation with a numerically 
integrated correction term. The latter can be used to compute $(t) (but 
not 1 - @(t)) to full register accuracy. 

Another application of the continued fraction that was discussed 
involved its use to evaluate some integrals that occur when approximating 
C(-is) by least squares. Low order approximations obtained using least 
squares are much more accurate over the frequency range of aerodynamic interest 
than the same order truncations of the continued fraction. However, high 
order approximations (those with over twenty terms) should be obtained by 
truncating the continued fraction because of numerical problems associated 
with the least squares process. 
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TABLE I. 

1 1  0.2500O00000 1 0.5000000000 0.1250000000 

n = 2  

1 0.0798343811 
0.0451656189 

1 0.1743060906 0.31698'72981 
2 1.0756039094 1.1830127019 

n = 4  
-. - 

1 0.1156902163 0.1742812056 0.0414478723 
2 0.5376897142 0.7031255226 0.0728261277 
3 1.6861213269 1.7116460071 0.0105184411 
4 3.9105987426 3.9109472647 0.0002075590 I 

! 

n = 8  

1 0.0708292313 
2 0.3014411613 
3 0.8103741892 
4 1.6931876604 
5 2.97383 55808 
6 4.7259501453 
7 7.1126863436 
8 10.5616956880 

0.0895316590 
0.4253867638 
0.8990325533 
1.7102975420 
2.9753615342 
4.7260072766 

10.5616956889 
7.1126869821 

0.0162792778 
0.0677288394 
0.0333426883 
0.0069379972 
0.0006840380 
0.0000268518 
O.OOOO003071 
0.0000000005 

28 



TABLE 11. 

k 
m 

I r residues k -s zeros k -sk poles 

A = 16 

.0103615336 .0112936532 
-0550659069 -0594029977 
-1282525325 -1451687092 

n' = 12 

.0003363445 

.0045647906 

.0165007629 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
13 
15 
15 
17 

- 0399290405 
.1770117985 
.4213665832 
-8319542602 

1.4174350819 
2 - 1767569894 
3.1151752001 
4.2433929936 
5.5769738664 
7.1372634130 
8.9538356848 
11.0691194948 

n = 32 

- 0212533667 
-1014880467 
-2313703318 
-4281625584 
-7083237338 

1.0728150641 
1.5200677586 
2.0496021188 
2. E619849235 
3.3585132712 
4 - 1409982347 
5.0116623678 
5.9731199112 
7.0284055993 
8.1810313620 
9.43 506 3 912 7 
10.7952245954 

-0450767705 
-2309790353 - 5256192420 
-8955477962 

1.4379146184 
2.1814331978 
3.1159585681 
4 - 2434850891 
5.5769811202 
7.1372637778 
8.9538356959 
11.0691134850 

n' = 17 

.0125775151 

.1181364893 

.2837315435 
-5028891998 
- 7663017562 

1.1020615789 
1.5318978031 
2.0537719222 
2.6632677368 
3.3588528353 
4.1410745802 
? ~116768049 
5.9731221892 
7.0284O58970 
8.1810313940 
9.4350639155 
10.7952245956 

n = 64 n' = 23 

-0049890236 
.0410711992 
.0460005529 
.0226896684 
.0078656754 
.0019842800 
.0003530589 
.0000429141 
.0000034466 
.0000001755 
.0000300054 
.0300000001 

.0013308165 

.0161066554 

.@367590439 
-0331916084 
-0202106302 
.0103265831 
,0045717209 
.0017407160 
.0005642149 
.0001544540 
.0000354467 
.0000068133 
.0000010866 
.0000001431 - 0000000155 
.0000000014 
.0000000001 
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TABLE 11.- Continued. 

n = 6 4  n’ = 23 

4 
5 
6 
7 
8 
9 

10 
11 
12 
1 3  
14 
15 
16 
17 
i3 
19 
20  
21 
2 2  
33 

1 

3 
.1 

6 
7 
8 
9 

10 
11 
1 2  
13 
1 4  
i s  
16 
17 
16 
1.) 
:? I 
LA 

> - 

r 
> 

i 

- 2294179265 
-3655073397 
-5421118538 
.?601447375 

1.0190503483 
1.3182897476 
1.6575617149 
2.0367717604 
2.4559788735 
2.9153514543 
3.4151351711 
3.9556318607 
4.5371873692 
5.1601856915 
5.8250470008 
6.5322278278 
7.2822223566 
6.0755643170 
8.9128292551 
9.7946371142 

11 = 128 

.0055646485 

.0266731117 

.0686131075 
-1238383560 
.1941C63301 
.28135508C5 
.3878314001 
.514541)2100 
-6516147368 
-8288591342 

1. C)160927402 
1.2231683248 
1.449985747? 
1.G964G47002 
1. ;r626365178 

2.5539011%3 
2.8730573811 
3. 323k3453612 
3.588612 1959 
3.3731115618 

L. 24a437i30i 

-2662436189 
.4178090C91 
-5945791192 
-7991787324 

1 - 0425922027 
1.3309553604 
1.66392 18323 
2.0397792676 
2.4573135565 
2.9159042425 
3.4153478013 
3.9557075370 
4.5372122223 
5.1601932080 
5.8250440909 
6.5322283615 
7.2822274815 
8.0755643438 
8.9128293604 
9.7946371151 

.0056474386 

.02974321.78 

.0729961100 

.1351282785 

.2155251600 

.313@883575 
-4262057173 

-6949482493 
-8538393471 

1.0331216673 
1.2341736061 

1.7006430926 
1.3650916373 
2.2498418721 

2.379474X89 
3.2241606823 

3.O73162S08? 

5533a49095 

1 . 4 5 6 a m n 3 2  

7.5546795382 

3.5a87133728 

-0271832071 
-0263132347 
-01 36294939 
-0130424499 
.0080538340 
-00464991 31 
.0025025914 
- 0012503827 . OC05779825 
-0002465585 
.OOOC%8939 
.0090350346 

.0000035542 
- @COO009956 
.0000002557 
.0000000602 
.0000000130 
.0000000026 
.0000000005 

.OOOOi16439 

.03@0836954 

.3011316178 

.0047528127 
-0115932142 
-0183257845 
-0204781205 
-3183965411 
-0147608539 
.0111662180 
.0081292943 
-0057288341 
.0039093147 
.0025797170 
.0016434498 
.0010092418 
.0005966957 
-0003393272 
-0001854763 
.0300973967 
.0000491158 
.0@0@237800 
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TABLE 11.- Concluded. 

1 
I 

22 
33 
24 
25 
26 
27 
28 
29 
30 
31 
32 

n = 128 n' = 32 

4.3775021010 
4.8018468266 
5.2462127401 
5.7106706464 
6- 1952350885 
6.7001643503 
7.2253605012 
7.7709694533 
8.337~~210429 
8.3237891120 
9.5311915985 

4.3775257587 
4.8018573035 
5.2462171976 
5.7106724677 
6.1952958030 
6-7001646199 
7.2253605984 
7.7709694870 
8.3370810542 
8.9237891156 
9.5311915996 

.0000110517 
-0090049295 
.0000021100 
.0000003666 
.0000003415 
.0000001291 
.0000000468 
.0000000163 
.0000000054 
. 000000001 7 
.0000000005 
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